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Abstract
The fluctuations of dynamical functionals such as the empirical density and
current as well as heat, work and generalized currents in stochastic thermody-
namics are usually studied within the Feynman-Kac tilting formalism, which
in the Physics literature is typically derived by some form of Kramers-Moyal
expansion, or in the Mathematical literature via the Cameron-Martin-Girsanov
approach. Here we derive the Feynman-Kac theory for general additive dynam-
ical functionals directly via Itô calculus and via functional calculus, where the
latter results in fact appears to be new. Using Dyson series we then independ-
ently recapitulate recent results on steady-state (co)variances of general addit-
ive dynamical functionals derived recently in Dieball and Godec (2022 Phys.
Rev. Lett. 129 140601) and Dieball and Godec (2022 Phys. Rev. Res. 4 033243).
We hope for our work to put the different approaches to the statistics of dynam-
ical functionals employed in the field on a common footing, and to illustrate
more easily accessible ways to the tilting formalism.

Keywords: Feynman-Kac theory, Itô calculus, functional calculus,
additive dynamical functionals, time-integrated density and current

1. Introduction

Dynamical functionals and diverse path-based observables [1–8], such as local and occupation
times (also known as the ‘empirical density’) [9–17] as well as diverse time-integrated and
time-averaged currents [18–31] are central to ‘time-average statistical mechanics’ [32–34],
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large deviation theory (see e.g. [19, 22, 25, 26, 35]), macroscopic fluctuation theory [36–38],
and path-wise, stochastic thermodynamics [28, 29, 39–44].

Several techniques are available for the study of dynamical functionals, presumably best
known is the Lie-Trotter-Kato formalism [10, 45] that was employed by Kac in his sem-
inal work [9]. The techniques typically employed in physics rely on an analogy to quantum
mechanical problems (see e.g. [15]) or assume some form of the Kramers-Moyal expansion
[13, 16, 46, 47] (see also interesting generalizations to anomalous dynamics [12, 17]).

Deriving Feynman-Kac theory [9] of such additive functionals amounts to obtaining a
‘tilted’ generator which generates the time-evolution of the observables under consideration.
The tilted evolution operator can be obtained using the Cameron-Martin-Girsanov theorem
[48, 49]—a well-known technical theorem often employed in the Mathematical Physics
literature [21–23].

In this paper we develop the Itô [34, 50] and functional calculus [51, 52] approaches to
Feynman-Kac theory, whereby we a focus on the methodology and accessibility for readers
that are unfamiliar with the Cameron-Martin-Girsanov approach to ‘tilting’. We thereby hope
to provide two accessible alternative (but equivalent) ways to obtaining the tilted generator.
While the Itô approach already exists (see e.g. [34] for the empirical density), our functional
calculus approach is a generalization of the pedagogical work of Fox [51, 52] and is aimed
towards readers who prefer to avoid Itô calculus. Since both methods are equivalent they yield
the same tilted generator. This generator is subsequently used to re-derive recent results on the
statistics of time-integrated densities and currents obtained in [30, 31] using a different, more
direct, stochastic calculus approach that avoids tilting. In particular, these results illustrate the
use of the tilted generator to derive the statistics of time-integrated observables for finite times,
i.e. extending beyond large deviation theory.

The outline of the paper is as follows. In section 2.1 we provide the mathematical setup of
the problem. In section 2.2 we derive the Feynman-Kac equation for a general dynamical func-
tional of diffusion processes using Itô calculus. By generalizing the approach by Fox [51, 52]
we derive in section 2.3 the Feynman-Kac equation using functional calculus. In section 3 we
apply the formalism to compute steady-state (co)variances of general dynamical functionals
using a Dyson-series approach. We conclude with a brief perspective.

2. Tilted generator

In this section, we first introduce the considered stochastic dynamics and define what we call
‘dynamical functionals’. Subsequently we derive the tilted generator (i.e. the operator gen-
erating the time-evolution of time-integrated functionals) based on Itô calculus, and finally
equivalently also via functional calculus.

2.1. Set-up

We consider overdamped stochastic motion in d-dimensional space described by the stochastic
differential equation

dxt = F(xt)dt+σdWt, (1)

where dWt is denotes increment of the Wiener process [50]. The corresponding diffusion
constant is D= σσT/2. For simplicity we stick to additive noise whereas all present res-
ults generalize to multiplicative noise D(x) as described in [31]. In the physics literature
equation (1) is typically written in the form of a Langevin equation
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ẋt = F(xt)+ f(t), (2)

with white noise amplitude
⟨
f(t)f(t ′)T

⟩
= 2Dδ(t− t ′). Comparing the two equations, f(t) cor-

responds to the derivative of Wt, which however (with probability one) is not differentiable;
more precisely, upon taking dt→ 0 one has ||dWt/dt||=∞ with probability one, which is
why the mathematics literature prefers equation (1).

If one describes the system on the level of probability densities instead of trajectories, the
above equations translate to the Fokker-Planck equation ∂tG(x, t|x0) = L̂(x)G(x, t|x0) with
conditional density G(x, t|x0) to be at x at time t after starting in x0 and the Fokker-Planck
operator [53, 54]

L̂(x) =−∇x ·F(x)+∇x ·D∇x =−∇x · ĵx, (3)

where we have defined the current operator ĵx ≡ F(x)−D∇x. Note that all differential oper-
ators act on all functions to the right, e.g. ∇x ·F(x)g(x) = g(x)∇x ·F(x)+F(x) ·∇xg(x).
Although the approach presented here is more general, we restrict our attention to (possibly
non-equilibrium) steady states where the drift F(x) is sufficiently smooth and confining to
assure the existence of a steady-state (invariant) density ps(x) = limt→∞G(x, t|x0) and steady-
state current js(x) = ĵxps(x). The special case js(x) = 0 corresponds to equilibrium steady
states. For systems that eventually evolve into a steady state we can rewrite the current operator
as [31] (again the differential operator in ∇xp−1

s (x) also acts on functions to the right if ĵx is
applied to a function)

ĵx = js(x)p−1
s (x)−Dps(x)∇xp

−1
s (x). (4)

Wewill later also restrict the treatment to systems evolving from steady-state initial conditions,
i.e. the initial condition xt=0 is drawn according to the density ps.

We define the two fundamental additive dynamical functionals—time-integrated current
and density—as

Jt =
ˆ τ=t

τ=0
U(xτ ) ◦ dxτ

ρt =

ˆ t

0
V(xτ )dτ, (5)

with differentiable and square-integrable (real-valued) functionsU,V : Rd → R and ◦ denoting
the Stratonovich integral [50, 55, 56]. These objects depend on the whole trajectory [xτ ]0⩽τ⩽t

and are thus random functionals with non-trivial statistics. In the following we will derive
an equation for the characteristic function of the joint distribution of xt,ρt,Jt via a Feynman-
Kac approach which will then yield the moments (including variances and correlations) via a
Dyson series. The formalism was already applied to the time-averaged density ρt/t (under the
term of local/occupation time fraction) [9, 34, 57]. To do so, we need to derive a tilted Fokker-
Planck equation, which we first do via Itô calculus and then, equivalently, via a functional
calculus. Note that the tilted generator can also be found in the literature on large deviation
theory [22, 23] (in this case obtained via the Feynman-Kac-Girsanov approach).

2.2. Tilting via Itô’s lemma

We first derive a tilted the Fokker-Planck equation using Itô calculus. From the Itô-
Stratonovich correction term dU(xτ )dxτ/2 and dxτdxTτ = 2Ddτ (where D= σσT/2) we
obtain from equations (1) and (5) the increments (curly brackets {∇ . . .} throughout denote
that derivatives only act inside brackets)
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dJτ = U(xτ ) ◦ dxτ = U(xτ )dxτ +D{∇xU}(xτ )dτ
dρτ = V(xτ )dτ. (6)

We use Itô’s lemma [50] in d dimensions for a twice differentiable test function f = f(xt,ρt,Jt)
and equations (1) and (6), to obtain

df =
d∑
i=1

∂f
∂xi

dx it +
∂f
∂ρ

dρt+
d∑
i=1

∂f
∂Ji

dJ it

+
1
2

d∑
i,j=1

(
∂2f

∂xi∂xj
dx itdx

j
t +

∂2f
∂Ji∂Jj

dJ itdJ
j
t + 2

∂2f
∂xi∂Jj

dx itdJ
j
t

)
= [(∇x f)+ (∇J f)U(xt)][F(xt)dt+σdWt] + (∇J f)D{∇xU}(xt)dt+V(xt)∂ρ fdt

+
(
∇T

xD∇x +U(xt)2∇T
JD∇J + 2U(xt)∇T

xD∇J
)
fdt. (7)

For the time derivative of f this gives

d
dt
f(xt,ρt,Jt) =

[(
F+σ

dWt

dt

)
(∇x +U∇J)+ {∇xU}D∇J

+V∂ρ +∇T
xD∇x +U2∇T

JD∇J + 2U∇T
xD∇J

]
f(xt,ρt,Jt). (8)

Following this formalism, we move towards a tilted Fokker-Planck equation [9, 34]. Using the
conditional probability density Qt(x,ρ,J|x0) we may write (omitting x dependence in F,U,V
for brevity) the evolution equation for ⟨ f(xt,ρt,Jt)⟩x0 , i.e. the expected value of f(xt,ρt,Jt)
over the ensemble of paths propagating between x0 and x in time t. Using equation (8) and
integration by parts, we obtain (note that non-negative functions V⩾ 0 imply ρ⩾ 0, such that
one would restrict the ρ-integration to

´∞
0 dρ as in [34])

d
dt
⟨ f(xt,ρt,Jt)⟩x0 =

ˆ
ddx
ˆ ∞

−∞
dρ
ˆ

ddJf(x,ρ,J)∂tQt(x,ρ,J|x0)

=

ˆ
ddx
ˆ ∞

−∞
dρ
ˆ

ddJQt(x,ρ,J|x0) [F(∇x +U∇J)+ {∇xU}D∇J

+V∂ρ +∇T
xD∇x +U2∇T

JD∇J + 2U∇T
xD∇J

]
f(x,ρ,J)

=

ˆ
ddx
ˆ ∞

−∞
dρ
ˆ

ddJ f(x,ρ,J) [−∇xF−UF∇J −{∇xU}D∇J −V∂ρ

+∇T
xD∇x +U2∇T

JD∇J + 2U∇T
xD∇J

]
Qt(x,ρ,J|x0). (9)

Since the test function f is an arbitrary twice differentiable function, the resulting tilted Fokker-
Planck equation reads

∂tQt(x,ρ,J|x0) = L̂x,ρ,JQt(x,ρ,J|x0), (10)

with the tilted Fokker-Planck operator1

1 For non-negative functions V ⩾ 0 an additional boundary term appears at ρ= 0 upon partial integration in
equation (9), leading to an extra term−V(x)δ(ρ) in equation (10) that ensures conservation of probability (see [34]).
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L̂x,ρ,J =−∇x ·F(x)+∇T
xD∇x −V(x)∂ρ −U(x)F(x) ·∇J

−{∇xU(x)}TD∇J +U(x)2∇T
JD∇J + 2∇T

JD∇xU(x)

=−[∇x +U(x)∇J]F(x)−V(x)∂ρ + [∇x +U(x)∇J]
TD [∇x +U(x)∇J] . (11)

We see that the ρ dependence enters in standard Feynman-Kac form [9, 34], whereas the J
dependence enters less trivially and shifts the gradient operator∇x →∇x +U(x)∇J.

2.3. Tilting via functional calculus

We now re-derive the tilted Fokker-Planck operator in equation (11) using a functional cal-
culus approach [51, 52] instead of the Itô calculus in the previous section. This shows that
both alternative approaches are equivalent, as expected. We closely follow the derivation
of the Fokker-Planck equation in [51] but for d-dimensional space and we generalize the
approach to include the functionals defined in equation (5). The following approach is equival-
ent to a Stratonovich interpretation of stochastic calculus which is manifested in the conven-
tion
´ t
0 δ(t

′)dt ′ =
´ t
0 δ(t− t ′)dt ′ = 1/2 [51]. The white noise term f(τ) with

⟨
f(τ)f(τ ′)T

⟩
s
=

2Dδ(τ − τ ′) in the Langevin equation (2) can be considered to be described by a path-
probability measure [51]

P[f] = Nexp

[
−1
2

ˆ t

0
f(τ)TD−1f(τ)dτ

]
, (12)

with normalization constant N which may formally be problematic but always cancels out.
We now derive a tilted Fokker-Planck equation for the joint conditional density Q of xt and

the functionals Jt,ρt, as defined in equation (5), given a deterministic initial condition x0 at
time t= 0,

Qt(x,ρ,J|x0)≡
ˆ

DfP[f]δ(x− xt)δ(ρ− ρt)δ(J− Jt). (13)

Note for the time derivatives that J̇t = U(xt)ẋt and ρ̇t = V(xt) to obtain (as a generalization of
the calculation in [51] to dynamical functionals)

∂tQ(x,ρ,J, t|x0) = ∂t

ˆ
DfP[f]δ(x− xt)δ(ρ− ρt)δ(J− Jt)

=

ˆ
DfP[f]

[
−∇x · ẋt− ∂ρρ̇t−∇J · J̇t

]
δ(x− xt)δ(ρ− ρt)δ(J− Jt)

=

ˆ
DfP[f] [−∇x · [F(xt)+ f(t)]−V(xt)∂ρ −U(xt) [F(xt)+ f(t)]∇J]

× δ(x− xt)δ(ρ− ρt)δ(J− Jt)

= [−∇xF(x)−V(x)∂ρ −U(x)F(x)∇J]Qt(x,ρ,J|x0)

− [∇x +U(x)∇J] ·
ˆ

DfP[f]f(t)δ(x− xt)δ(ρ− ρt)δ(J− Jt). (14)

The functional derivative of equation (12) reads [51]

δP[f]
δf(t)

=−1
2
D−1f(t)P[f], (15)
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which we use to obtain, via an integration by parts in δf(t),

−
ˆ

DfP[f]f(t)δ(x− xt)δ(ρ− ρt)δ(J− Jt) = 2D
ˆ

Df
δP[f]
δf(t)

δ(x− xt)δ(ρ− ρt)δ(J− Jt)

=−2D
ˆ

DfP[f]
δ

δf(t)
δ(x− xt)δ(ρ− ρt)δ(J− Jt).

(16)

As before, differentials are understood to act on all functions to the right, i.e. δ
δf(t) here acts on

the full product of delta functions. We obtain

δ

δf(t)
δ(x− xt)δ(ρ− ρt)δ(J− Jt)

=

[
−∇x

δxt
δf(t)

− ∂ρ
δρt
δf(t)

−∇J
δxt
δf(t)

]
δ(x− xt)δ(ρ− ρt)δ(J− Jt), (17)

and we use that δρt/δf(t) = 0, and δxt/δf(t) = 1/2 [51] which implies δJt/δf(t) = U(xt)1/2,
to get

δ

δf(t)
δ(x− xt)δ(ρ− ρt)δ(J− Jt) =

1
2
[−∇x −U(xt)∇J]δ(x− xt)δ(ρ− ρt)δ(J− Jt). (18)

Plugging equation (18) first into equation (16) and then into equation (14) yields the tilted
Fokker-Planck equation for the joint conditional density

∂tQt(x,ρ,J|x0) =
[
−∇xF(x)−V(x)∂ρ −U(x)F(x)∇J

+ [∇x +U(x)∇J]
TD [∇x +U(x)∇J]

]
Qt(x,ρ,J|x0). (19)

Note that equation (19) fully agrees with equation (11) derived via Itô calculus thus establish-
ing the announced equivalence of the two approaches.

3. Steady-state covariance via dyson expansion of the tilted propagator

In this section we employ the tilted Fokker-Planck equation (19) to derive results for the mean
value and (co)variances of time-integrated densities and currents. These follow as derivatives
of the characteristic function evaluated at zero, and it thus suffices to treat the tilt as a per-
turbation of the ‘bare’ generator (see [34]). The derivation is based on a Dyson expansion of
the exponential of a Fourier-transformed tilted generator (i.e. tilted Fokker-Planck operator).
Therefore, consider a one-dimensional Fourier variable ν and a d-dimensional Fourier variable
ω = (ω1, . . . ,ωd) and define the Fourier transform of Qt(x,ρ,J|x0) as

Q̃t(x,ν,ω|x0)≡
ˆ ∞

−∞
dρ
ˆ

ddJQt(x,ρ,J|x0)exp(−iνρ− iω · J) . (20)

In the case V⩾ 0 where ρ⩾ 0 one would instead take the Laplace transform in the
ρ-coordinate, see [34]. Recall the (untilted) Fokker-Planck operator L̂(x) =−∇x · ĵx with
the current operator ĵx = F(x)−D∇x from equation (3). The Fourier transform of the tilted
Fokker-Planck operator in equations (11) and (19) reads

L̂(x,ν,ω) = L̂(x)− iνV(x)− iωT · L̂U(x)−U(x)2ωTDω,

L̂U(x)≡ U(x)̂jx −D∇xU(x). (21)
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As always, the differential operators act on all functions to the right unless written inside
curly brackets, i.e.∇xU(x) = {∇xU(x)}+U(x)∇x. Note that whereas we obtained the tilted
generator directly and only subsequently Fourier transformed it, there are also approaches that
directly target the Fourier image of the tilted generator (see e.g. [58]). Compared to the tilt
of the density (i.e. the ν-term; see also [34]), the tilt corresponding to the current observable
(ω-terms) involves more terms and even a term that is second order in ω. The second order
term occurs since (dWτ )

2 ∼ dτ and therefore (in contrast to dτdWτ and dτ 2) contributes in
the tilting of the generator.

We now restrict our attention to dynamics starting in the steady state ps and denote the
average over an ensemble over paths propagating from the steady state by ⟨·⟩s. Extensions of
the formalism to any initial distribution are straightforward and introduce additional transient
terms. For the derivation of the moments of ρt and Jt, we introduce and expand the character-
istic function (also known as moment-generating function)

P̃ρJ
t (ν,ω|ps)≡

⟨
e−iνρt−iω·Jt

⟩
s
= 1− iν ⟨ρt⟩s − iω · ⟨Jt⟩s−νω · ⟨ρtJt⟩s +O(ω2,ν2). (22)

This expansion in ν,ω will now be compared to the Dyson expansion of the exponential of
equation (21) which yields expressions for ⟨ρt⟩s ,⟨Jt⟩s ,⟨ρtJt⟩s by comparing individual orders.

The Dyson expansion allows to expand for small |ν|, |ω| (see also [34])

eL̂(x1,v,ω)t = 1−i
ˆ t

0
dt1e

L̂(x1)(t−t1)
[
νV(x1)+ωT · L̂U(x1)

]
eL̂(x1)t1

−
ˆ t

0
dt2

ˆ t2

0
dt1e

L̂(x1)(t−t2)
[
νV(x1)+ωT · L̂U(x1)

]
eL̂(x1)(t2−t1)

×
[
νV(x1)+ωT · L̂U(x1)

]
eL̂(x1)t1 +O(ω2,ν2). (23)

Using that the first propagation only differs from 1 by total derivatives (recall L̂(x) =−∇x · ĵx),
and using for the last propagation term eL̂(x1)t1ps(x1) = ps(x1), we obtain

P̃ρJ
t (v,ω|ps) =

ˆ
ddx1 e

L̂(x1,v,ω)tps(x1) = 1−i
ˆ

ddx1

ˆ t

0
dt1

[
νV(x1)+ωT · L̂U(x1)

]
ps(x1)

−
d∑

l,m=1

ˆ
ddx1

ˆ t

0
dt2

ˆ t2

0
dt1

[
νV(x1)+ωT · L̂U(x1)

]
eL̂(x1)(t2−t1)

×
[
νV(x1)+ωT · L̂U(x1)

]
ps(x1)+O(ω2,v2). (24)

We substitute the one-step propagation by the conditional density G(x2, t|x1) =
eL̂(x1)tδ(x2 − x1) [56, 59],ˆ

ddx1f(x1)eL̂(x1)(t2−t1)g(x1) =
ˆ

ddx1

ˆ
ddx2f(x2)G(x2, t2 − t1|x1)g(x1), (25)

which yields

P̃ρJ
t (v,ω|ps) = 1−i

ˆ
ddx1

ˆ t

0
dt1

[
νV(x1)+ωT · L̂U(x1)

]
ps(x1)

−
ˆ

ddx1

ˆ
ddx2

ˆ t

0
dt2

ˆ t2

0
dt1

[
νV(x2)+ωT · L̂U(x2)

]
×G(x2, t2 − t1|x1)

[
νV(x1)+ωT · L̂U(x1)

]
ps(x1)+O(ω2,ν2). (26)
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This concludes the expansion of the exponential of the Fourier transformed tilted generator.
Now, by comparing the definition and expansion of the characteristic function equation (22)
with the result equation (26) from the Dyson expansion, we obtain the moments and correla-
tions of the functionals Jt =

´ τ=t
τ=0U(xτ ) ◦ dxτ and ρt =

´ t
0 V(xτ )dτ .

Note that the first moments (i.e. the mean values for steady-state initial conditions) can also
be obtained directly [18, 31] but we obtain them here by comparing the terms of order ν and
ω in equations (22) and (26),

⟨ρt⟩s =
ˆ t

0
dt1

ˆ
ddx1V(x1)ps(x1) = t

ˆ
ddx1V(x1)ps(x1)

⟨Jt⟩s = t
ˆ

ddx1[U(x1)̂jx1 −D∇x1U(x1)]ps(x1) = t
ˆ

ddx1U(x1)js(x1), (27)

where∇x1U(x1)ps(x1) vanishes after integration by parts and js(x1)≡ ĵx1ps(x1) is the steady-
state current.

By comparing the terms of order νω in equations (22) and (26) we have for the steady-state
expectation ⟨Jtρt⟩s that

⟨Jtρt⟩s =
ˆ t

0
dt2

ˆ t2

0
dt1

ˆ
ddx1

ˆ
ddx2

×
[
L̂U(x2)G(x2, t2 − t1|x1)V(x1)+V(x2)G(x2, t2 − t1|x1)LU(x1)

]
ps(x1)

=

ˆ t

0
dt2

ˆ t2

0
dt1

ˆ
ddx1

ˆ
ddx2

[
U(x2)̂jx2G(x2, t2 − t1|x1)V(x1)

+V(x2)G(x2, t2 − t1|x1)[U(x1)̂jx1 −D∇x1U(x1)]
]
ps(x1). (28)

We note that for any function f the following identity holdsˆ t

0
dt2

ˆ t2

0
dt1f(t2 − t1) =

ˆ t

0
dt ′(t− t ′)f(t ′), (29)

and further introduce the shorthand notation

Î txy[· · · ] =
ˆ t

0
dt ′(t− t ′)

ˆ
ddx1

ˆ
ddx2U(x1)V(x2)[· · · ]. (30)

Moreover, we define the joint density Py(x, t)≡ G(x, t|y)ps(y) and following [31]
introduce the dual-reversed current operator ĵ‡x ≡ js(x)/ps(x)+Dps(x)∇xp−1

s (x) =
−ĵx(js →−js). With these notations, using integration by parts, and by relabeling x1 ↔ x2 in
one term, we rewrite equation (28) to obtain for the correlation, reproducing the main result
of [30, 31],

⟨Jtρt⟩s −⟨Jt⟩⟨ρt⟩s = Î txy
[̂
jx1Px2(x1, t

′)+ js(x1)p−1
s (x1)Px1(x2, t

′)

+Dps(x1)∇x1ps(x1)
−1Px1(x2, t

′)
]
−⟨Jt⟩⟨ρt⟩s

= Î txy
[̂
jx1Px2(x1, t

′)+ ĵ‡x1Px1(x2, t
′)− 2js(x1)ps(x2)

]
. (31)

Wewill discuss this result below, but first derive analogous results for (co)variances of densities
and currents, respectively.

Instead of obtaining
⟨
ρ2t
⟩
s
from the ν2 order in equation (26) we here consider a gen-

eralization to two densities, ρt =
´ t
0 V(xτ )dτ and ρ ′

t =
´ t
0U(xτ )dτ . The Fourier-transformed

tilted generator in equation (21) with Fourier variables ν,ν ′ corresponding to ρt,ρ ′
t is obtained

8
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equivalently and gives L̂(x,v,v ′) = L̂(x)− iνV(x)− iν ′U(x). The related term in the Dyson
series (by an adaption of equation (26) including ν ′U) becomes [νV(x2)+ ν ′U(x2)]G(x2, t2 −
t1|x1)[νV(x1)+ ν ′U(x1)]ps(x1) (see also [34]). By comparison with the characteristic function
in equation (22) including ρ ′

t , one obtains the known result [9, 34],

⟨ρtρ ′
t ⟩s −⟨ρt⟩s ⟨ρ

′
t ⟩s = Î txy[Px2(x1, t

′)+Px1(x2, t
′)− 2ps(x1)ps(x2)]. (32)

For U=V this becomes the variance of ρt which can also be obtained from the order ν2 in
equations (22) and (26).

To obtain the current covariance, we accordingly require a tilted generator with two Four-
ier variables ω,ω ′ corresponding to Jt =

´ τ=t
τ=0U(xτ ) ◦ dxτ and J ′

t =
´ τ=t
τ=0 V(xτ ) ◦ dxτ , which

can, by the same formalism, be derived as

L̂(x,ω,ω ′) = L̂(x)− iωT · L̂U(x)− iω ′T · L̂V(x)−U(x)2ωTDω−V(x)2ω ′TDω ′

− 2U(x)V(x)ωTDω ′

L̂V(x)≡ V(x)̂jx −D∇xV(x). (33)

The Dyson series (by adapting equation (26)) based on L̂(x,ω,ω ′) for two currents J,J ′ reads

P̃JJ ′

t (ω,ω ′|ps)

= 1−
ˆ

ddx1

ˆ t

0
dt1

[
iωT · L̂U(x1)+ iω ′T · L̂V(x1)+ 2U(x1)V(x1)ωTDω ′

]
ps(x1)

+

ˆ
ddx1

ˆ
ddx2

ˆ t

0
dt2

ˆ t2

0
dt1

[
iωT · L̂U(x2)+ iω ′T · L̂V(x2)

]
×G(x2, t2 − t1|x1)

[
iωT · L̂U(x1)+ iω ′T · L̂V(x1)

]
ps(x1)+O(ω2,ω ′2). (34)

The expectation value of the product of current components
⟨
Jt,nJ ′t,m

⟩
s
is given by the terms

that are linear in ωnω ′
m, i.e. (recall Dnm = Dmn)⟨

Jt,nJ
′
t,m

⟩
s
= 2tDnm

ˆ
ddx1U(x1)V(x1)ps(x1)+

ˆ t

0
dt ′(t− t ′)

ˆ
ddx1

ˆ
ddx2

×
[
L̂Un (x2)G(x2, t

′|x1) · L̂Vm(x1)ps(x1)+ L̂Vm(x2)G(x2, t
′|x1) · L̂Un (x1)ps(x1)

]
. (35)

We denote by =̂ equality up to gradient terms that vanish upon integration to write

L̂Un (x2)G(x2, t
′|x1) · L̂Vm(x1)ps(x1)

=̂U(x2)̂jx2,nG(x2, t
′|x1)

×
[
V(x1)js(x1)p−1

s (x1)− ps(x1)D∇x1ps(x1)
−1 −D∇x1V(x1)

]
m
ps(x1)

=̂U(x2)V(x1)̂jx2,n[js(x1)p
−1
s (x1)+ ps(x1)D∇x1p

−1
s (x1)]mG(x2, t ′|x1)ps(x1)

= U(x2)V(x1)̂jx2,nĵ
‡
x1,mPx1(x2, t). (36)

Inserting this into equation (35), and relabeling in one term x1 ↔ x2 we obtain for the nm-
element of the current covariance matrix⟨
Jt,nJ

′
t,m

⟩
s
−⟨Jt,n⟩s

⟨
J ′t,m

⟩
s
= 2tDnm

ˆ
ddx1U(x1)V(x1)ps(x1)

+ Î txy
[̂
jx1,m ĵ

‡
x2,nPx2(x1, t

′)+ ĵx2,n · ĵ‡x1,mPx1(x2, t
′)
]
. (37)
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This reproduces and slightly generalizes the main result of [30, 31] where the diagonal ele-
ments (m= n) of the covariance matrix were derived. This result for the current covariance
matrix and equation (31) for the current-density correlation are the natural generalizations
of the density-density covariance equation (32), as described in detail in [30, 31], with the
additional 2tDnm-term in equation (37) arising from the (dWτ )

2 contribution in Jt,nJ ′t,m mani-
fested in the term −2U(x)V(x)ωTDω ′ in the tilted generator in equation (33). While the
density-density covariance equation (32) only depends on integration over all paths from x1
to x2 (and vice versa) in time t

′
via Px1(x2, t

′), the current-density correlation equation (31)
instead involves ĵx1Px2(x1, t

′) and ĵ‡x1Px1(x2, t
′)which describe currents at the final- and initial-

points, respectively [31]. This notion is further extended in the result equation (37) where
ĵx2,n̂j

‡
x1,mPx1(x2, t

′) corresponds to products of components of displacements along individual
trajectories from x1 to x2 [30].

4. Conclusion

Weemployed a Feynman-Kac approach to derivemoments and correlations of dynamical func-
tionals of diffusive paths—the time-integrated densities and currents. We presented two differ-
ent but equivalent approaches to tilting the generator—Itô and functional calculus. These two
approaches illustrate how one can freely choose between Itô and functional calculus to derive
results on dynamical functionals. In particular, both approaches are accessible without further
technical mathematical concepts such as the Cameron-Martin-Girsanov theorem that is often
used in the study of tilted generators. Our methodological advance thus provides a flexible
repertoire of easily accessible methods that will hopefully prove useful in future studies of
related problems.

The derivation of the moments and correlations based on the tilted generator reproduces
results with important implications for stochastic thermodynamics and large deviation theory,
in particular for the physical and mathematical role of coarse graining [30, 31], and thereby
displays how the tilted generator yields results on the statistics of dynamical functionals, even
beyond the large deviation limit.
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